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INTRODUCTION 

Hydroperoxides i n  j e t  f u e l s  a t t a c k  elastomers i n  a i r c r a f t  f u e l  systems 
with consequent l e a k s  or inoperat ion of f u e l  cont ro ls .  Problems have been 
assoc ia ted  with J e t  A ,  JP-4, and JP-5 j e t  f u e l s .  The f i r s t  reported inc idents  
occurred with Jet A i n  Japan i n  1962 when f u e l  hoses of  neoprene or n i t r i l e  
rubber cracked and leaked (1) .  I n  1976 t h e  U.S. Navy experienced a t t a c k  on 
neoprene f u e l  pump diaphragms on j e t s  opera t ing  i n  t h e  P h i l i p i n e s  (2). More 
recent  problems have been encountered i n  Thialand w i t h  JP-4 when Buna-N 
O-rings cracked and l e a k s  from f u e l  pumps occurred. A l l  i n c i d e n t s  involved 
fuels which had been hydrotreated and had peroxide l e v e l s  from 1 t o  8 
mi l l iequiva len ts  of a c t i v e  oxygen per  kilogram of f u e l  (peroxide number, 
P.N. ). 

Examination of f u e l s  re f ined  by d i f f e r e n t  processes has  ind ica ted  t h a t  
s i g n i f i c a n t l y  higher  peroxide concentrations exist i n  f u e l s  which have been 
severe ly  hydrotreated.  The U.S. Navy has  continuing concerns with t h i s  t o p i c  
due to  increas ing  hydrogenation f o r  je t  f u e l  processing.  I n  addi t ion ,  
shale-derived f u e l  production w i l l  involve more ex tens ive  and higher  pressure 
hydrotreatment. I t  has  been demonstrated t h a t  s u l f u r  compounds i n  l u b r i c a t i n g  
o i l s  a c t  a s  an t iox idants  by decomposing peroxides ( 3 ) .  I t  is believed t h a t  
hydrogenation is respons ib le  f o r  removing n a t u r a l  i n h i b i t o r s ,  including 
s u l f u r  compounds, t o  peroxide formation. 

Hydroperoxide concentrat ion has  heen found t o  be a f a c t o r  i n  f u e l  
i n s t a b i l i t y .  Fuel degradat ion is observed t o  occur under long-term 
low-temperature s torage  condi t ions  ( s torage  s t a b i l i t y )  as well as short-term 
high-temperature s t r e s s  (thermal oxida t ive  s t a b i l i t y )  (4-7). The l a t t e r  
s i t u a t i o n  is found during f l i g h t  condi t ions ,  where f u e l  se rves  a s  a coolant  
on its path t o  t h e  combustion chamber. Although s l i g h t  thermal degradation is 
found t o  occur i n  nonoxidizing atmospheres, t h e  presence of oxygen or a c t i v e  
spec ies  such a s  hydroperoxides w i l l  g r e a t l y  a c c e l e r a t e  o x i d a t i v e  degradation 
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as w e l l  as s i g n i f i c a n t l y  lower the temperature a t  which undesirable changes 
i n  fue l  take place. The rates o f  reactions i n  autoxidation schemes are 
dependant on hydrocarbon structure, heteroatom concentration, oxygen 
concentration, and temperature (8-10). I f  s u f f i c i e n t  oxygen i s  present, the 
hydroperoxides w i l l  reach a high l eve l .  I f  the avai lab le oxygen i s  low, but 
the temperature raised, the hydroperoxide concentrat ion w i l l  be l i m i t e d  by 
f ree r a d i c a l  decomposition. Under these condit ions, f u e l  degradation can be 
associated w i th  both hydroperoxide formation and decomposition. 

Several so lu t ions t o  the problem o f  f u e l  peroxidation have been 
suggested. Ant ioxidants have been mandated by some author i t ies ,  p a r t i c u l a r l y  
f o r  hydrotreated fue ls .  V i ton elastomers and other materials have been 
proposed as replacement materials but  t h e i r  low temperature propert ies make 
them marginal fo r  a i r c r a f t  use. Clay f i l t r a t i o n  has been suggested as a means 
f o r  f i e l d  removal o f  hydroperoxides but t h i s  treatment has been found t o  be 
too expensive (2). Although hindered phenols have given sa t i s fac to ry  peroxide 
contro l ,  those phenols which are permitted i n  the j e t  f u e l  spec i f icat ions 
were developed f o r  gum con t ro l  i n  gasoline. Their effect iveness f o r  peroxide 
con t ro l  was found t o  be marginal, depending on s t ructure (11). I t  is 
necessary t o  invest igate the re la t i onsh ip  o f  temperature on peroxide 
concentration i n  f u e l  as i t  re la tes  to  peroxide formation as w e l l  as f u e l  
s t a b i l i t y .  

Sulfur i s  the most abundant heteroatom present i n  j e t  fue ls  (up t o  0.4% 
allowed by speci f icat ions) .  Deposits formed i n  j e t  f u e l  i n  the presence of 
oxygen contain a higher percentage of s u l f u r  than tha t  present i n  the fuel 
i t s e l f  (12). The formation o f  these deposits has been a t t r i b u t e d  t o  the 
p a r t i c i p a t i o n  o f  su l f ides,  d i su l f i des ,  and t h i o l s  (mercaptans) (13). I n  j e t  
f ue l s  that  have been deoxygenated, su l f i des  and d i su l f i des  have been found t o  
lead t o  increased s o l i d  formation (14). Examination o f  the reactions between 
both a l k y l  and aromatic t h i o l s  with tert-butylperoxide have indicated that  
aromatic t h i o l s  are more react ive than other classes o f  su l fur  compounds wi th  
hydroperoxides. The reac t i on  o f  thiophenol wi th  tBHP was found t o  produce 
t race amounts o f  su l fon i c  ac id  while deplet ing the amount o f  both reactants 
i n  so lut ion (15). I t  i s  desirable t o  t e s t  the re la t i onsh ip  between su l fu r  
compound r e a c t i v i t y  and peroxide formation using an a r y l  t h i o l  as a model 
dopant under accelerated storage conditions. 

This paper repo r t s  on the hydroperoxide formation i n  hydrotreated JP-5 
j e t  fuels a t  various temperatures, i n  both the presence and absence o f  
antioxidants. The r e s u l t s  o f  using thiophenol as a model dopant fo r  four 
stable, hydrotreated j e t  f u e l s  under 65C accelerated storage condit ions and 
the effect on peroxide formation versus added su l fu r  concentration are also 
reported. 

EXPERIMENTAL 

Fuels and Reagents. The fue l s  examined f o r  the temperature e f fec ts  study 
included a shale JP-5 with antioxidant, a hydrotreated petroluem JP-5 wi th  
and without ant iox idant ,  and a petroluem JP-4 without antioxidant. The four 
fuels investigated f o r  the su l fu r  versus peroxide concentration study were 
the same Shale-I1 JP-5 used i n  the temperature study (J-22), a Jet-A, a 
Hydrocracked JP-5 and a Hydrofined JP-5 from Esso Petroluem Corporation, 
Ontario, Canada. Thiophenol was obtained from A ld r i ch  Chemical Co. and was 
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d i s t i l l e d  i n  vacuo t o  99.9% pur i t y .  
Method. Tests were ca r r i ed  ou t  i n  brown bo ros i l i ca te  glass bo t t l es ,  500 m l  
t o t a l  capacity, capped with t e f l o n  l i n e r s ,  containing 300 m l  o f  f u e l  per 
bo t t l e .  f o r  temperature e f f e c t s  on peroxidat ion were ca r r i ed  out a t  43, 
65, SO and 1OOC. To t e s t  the  re la t ionsh ip  o f  added su l fu r  t o  peroxide 
concentration, dup l i ca te  samples o f  the  four other fue l s  were prepared, with 
0.10 and 0.05% s u l f u r  i n  the form o f  thiophenol weighed i n t o  one sample of 
each fuel .  Stress t e s t s  were conducted a t  65C f o r  f i v e  weeks. Samples were 
analyzed weekly f o r  peroxide concentration by ASTM method D3703-85. Sul fur  
concentration was monitored weekly with a Tracor 565 gas chromatograph 
equipped with a su l fu r  spec i f i c  700A H a l l  e l e c t r o l y t i c  conduct iv i t y  detector. 

RESULTS AND DISCUSSION 

Test 

Rolls-Royce defined the peroxidat ion p o t e n t i a l  o f  a f u e l  w i t h  an 
accelerated l O O C  t e s t  f o r  24 hours (1). The relevance o f  t h i s  t e s t  t o  ambient 
storage condi t ions was o f  i n te res t ,  so stress tes ts  were conducted a t  43, 65, 
80 and 1OOC. 

The peroxide numbers f o r  the d i f f e r e n t  temperatures are l i s t e d  i n  Table 
I. The stress times were selected according t o  the  Arrhenius re la t i on ,  namely 
doubling (or halv ing) o f  reac t ion  r a t e  f o r  every 10°C change i n  
temperature, and then modified based on previous resu l t s  from our laboratory.  
Thus time fac to rs  o f  30:l and 1 O : l  were used f o r  43C and 65C t e s t  instead o f  
the calculated values o f  52: l  and 11.3:l. Columns i n  the  Table are labeled 
“equivalent hours a t  1OOC.” The ac tua l  storage times a t  the several 
temperatures are shown a t  the end o f  the data tab le .  

Data f o r  the two JP-5 samples, with and without oxidant are p l o t t e d  i n  
Figures 1 and 2. Time fac to rs  f o r  mu l t i p l y ing  the  abscissa are l i s t e d  on the 
graphs f o r  the  various temperatures. 

The data revea l  appreciable va r ia t i on  i n  peroxide number as a func t ion  o f  
time, temperature and fuel .  Two fuels,  petroluem JP-5 and JP-4 both without 
ant ioxidant,  show f a i r  agreement between the temperatures based on equivalent 
time periods. I n  a t  l e a s t  two cases (Fuels 3 and 41, peroxide l e v e l s  a t  a l l  
times were lower a t  the lower temperatures. With the two fue l s  containing 
ant ioxidants (Fuels 1 and 31, r e s u l t s  a t  the lower temperatures were qu i te  
d i f f e r e n t  from resu l t s  a t  the  higher temperatures, and therefore not 
predictable from the  higher temperature tes t .  

Important d i f fe rence i n  f u e l  response t o  temperature i s  i l l u s t r a t e d  by 
comparing Figures 1 and 2. The hydrotreated JP-5 without ant ioxidant (Fuel 
2), Figure 1, produces peroxide a t  a l i n e a r  r a t e  with respect t o  t ime f o r  the 
i n i t i a l  po r t i on  o f  the  tests. The time fac to rs  are also r e l i a b l e  i n  the  1-3 
day equivalent t ime frame. 

Shale-I1 JP-5 (Fuel 1) containing an ant ioxidant behaves qu i te  
d i f f e r e n t l y .  Peroxidat ion fo l lows an exponential ra te .  The most probahle 
explanation f o r  t h i s  observation i s  the  deplet ion with t ime o f  the 
ant ioxidant.  The r a t e  o f  peroxidat ion was no t  p red ic tab le  from the time 
factors.  Spec i f i ca l l y ,  the r a t e  was much fas te r  a t  80 and l O O C  than the low 
temperature data would indicate.  

Based on these observations, the 65C stress t e s t  was chosen f o r  the 
s u l f u r  concentration study. Added s u l f u r  concentrations of 0.10 and 0.05% 
s u l f u r  (weight/volume) were used. The data f o r  these tes ts  are represented i n  
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Tables 11 and I11 respect ive ly .  
For both s u l f u r  concentrations, the con t ro l  samples, f u e l  only, exhibited 

s im i la r  behavior. Di f ferences i n  ac tua l  peroxide numbers between the two 
tes ts  could be a t t r i b u t e d  t o  thermostatic dif ferences i n  the ovens t h a t  were 
used. It was i n t e r e s t i n g  t h a t  i n  Jet A peroxide formation occurred i n  a 
c y c l i c  pattern. The petroluem derived JP-5 samples formed peroxides a t  a 
greater r a t e  than the shale JP-5 or Jet  A. 

The most important aspect of  both sets of  data was that  the samples doped 
w i th  su l fu r  i n  the form o f  thiophenol d i d  not  undergo peroxidation as rap id l y  
as the f u e l  by i t s e l f .  I n  fact ,  thiophenol add i t i on  el iminated ROOH present 
i n  s t a r t i n g  samples i n  most tests ,  and a f te r  the f i r s t  week i n  the other 
tests .  I n  the samples doped wi th  0.10% sul fur ,  peroxide formation was not 
observed u n t i l  the fou r th  week o f  the s t ress test .  When the  concentration o f  
added su l fu r  was reduced (halved) peroxide formation began one week e a r l i e r  
w i th  three o f  the fuels, i nd i ca t i ng  a re la t i onsh ip  between added su l fu r  
concentration and peroxide formation (or peroxide i n h i b i t i o n ) .  Neither o f  the 
doped samples o f  the hydrocracked JP-5 showed evidence o f  peroxide formation 
throughout the durat ion o f  the tests. 

The s u l f u r  concentrat ion o f  the samples was found t o  decrease throughout 
the tes ts  as measured by the  su l fur  s p e c i f i c  detector on the gas 
chromatograph. The emergence o f  new peaks on the chromatogram ind icated the 
formation o f  new sulfur-containing compounds, however concentrations were 
too low t o  permit i d e n t i f i c a t i o n .  Since aromatic t h i o l s  are qu i te  react ive i n  
the presence o f  peroxides, the thiophenol most l i k e l y  undergoes ox idat ion by 
the peroxide species. These reactions could be s i m i l a r  t o  other observed 
l i q u i d  phase ox idat ion reactions t h a t  take place between thiophenol and 
t -bu ty l  hydroperoxide (15). 

CONCLUSIONS 

The e f f e c t  o f  adding s u l f u r  i n  the form o f  an aromatic t h i o l ,  thiophenol, 
was s ign i f icant  t o  peroxide formation. Thiophenol has been found t o  act  as an 
i n h i b i t o r  or c o n t r o l l e r  o f  peroxide formation i n  Jet A, Shale-I1 derived 
JP-5, ana petroluem derived JP-5. Hydrotreated j e t  fue ls  exhib i ted higher 
peroxide formation and concentration than other fuels. Hydrotreatment reduces 
the sulfur content o f  the fue l ,  which removes those na tu ra l l y  occurring 
su l fu r  compounds which act as i n h i b i t o r s  t o  peroxide formation. There 
appeared t o  be a " c r i t i c a l  concentration" o f  s u l f u r  a t  which peroxide 
formation was i n h i b i t e d .  I f  t h i s  concentration was decreased or consumed, 
peroxidation took place i n  an uncontrol led manner. 
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TABLE 11 

,Jet %el Peroxidation a t  6 5 O C  wlth Added lhiophenol 
0.10% Sulfur  Dopant 

Shale-I1 JP-5 Jet A Hydrocracked JP-5 Hydrofined JP-5 

Week Control Doped Control Doped Control Doped Control Doped 

0 0.25 0.25 0.00 0.00 0.00 0.00 0.16 0.16 
1 0.24 0.00 0.19 0.00 0.18 0.00 0.57 0.00 
2 0.31 0.00 0.44 0.00 0.49 0.00 1.36 0.00 
3 0.37 0.00 0.19 0.00 1.10 0.00 1.73 0.00 
4 0.51 1.29 0.40 0.51 4.08 0.00 5.38 0.26 
5 0.48 0.97 0.26 0.40 10.82 0.00 8.47 0.25 

TABLE 111 

Jet Fbel Peroxidation a t  65OC wlth Added Tniophenol 
0.05% Sulfur Dopant 

Shale-TI JP-5 Jet A Hydrocracked JP-5 Hydrofined JP-5 

Week Control Doped Control Doped Control Doped Control Doped 

0 0.69 0.00 0.12 0.00 0.10 0.00 0.24 0.00 
1 0.70 0.00 0.18 0.00 0.60 0.00 1.58 0.00 
2 0.73 0.00 0.16 0.00 2.09 0.00 6.01 0.00 
3 0.94 0.45 0.28 0.54 12.41 0.00 37.66 0.61 
4 1.11 0.68 0.26 0.22 25.27 0.00 62.05 0.51 
5 1.56 0.88 0.29 0.81 56.67 0.00 59.92 0.25 

519 



FIGURE 1 

HYDROPEROXIDE FORMATION 
AT VARIOUS TEMPERATURES 
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FIGURE 2 

HYDROPEROXIDE FORMATION 
AT VARIOUS TEMPERATURES 
- -SHALE - I I JP - 5 - -WITH A.O. 
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